Developing and Evaluating Novel Techniques for Moose Monitoring in NH 2022-2025

Wildlife Modeling & Management Lab Dr. Remington Moll Msc. Candidate Lily Hall

Earth Systems Research Center Dr. Michael Palace Research Scientist Franklin Sullivan

Henry Jones NH Fish and Game Moose Project Leader

MOOSE ABUNDANCE: DEER HUNTER SURVEY

MOOSE SIGHTING RATE BY DEER HUNTERS

 DEER HUNTER SURVEY FORM - RETURN ON OR BEFORE DEC. 2, 2019

 TOWN OF RESIDENCE:
 NEW TOWN
 state
 N.H.

 NAME (optional):
 JOHN Q. HUNTER
 PHONE 4 (optional):
 555-1000

 ADDRESS (optional):
 46 MAIN ST. NEWTOWN, NH 05000
 DATE OF BIRTH (optional):
 5/10/65

 MONTH DAY
 WMU
 TOWN HUNTED
 #HOURS
 5EEN
 BOLL COW
 CAFL UNAL
 #BOBD

 11
 0.5
 A.Z.
 PI/T/T.S.B.U.R.0
 5/0
 Z
 5
 1
 1
 Z
 1
 1
 1
 1
 1
 1
 0
 3
 1
 1
 1
 1
 1
 1
 0
 3
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

AERIAL INFRARED SURVEY OF MOOSE "TRUTH LAYER"

REASSESS ACCURACY OF DHS

24 years since last checked with a thermal survey.

• Moose density is lower.

• Change in deer hunter behavior?

Importance of Moose Abundance

 Widespread social concern about decline.

• Winter ticks are influenced by moose density.

 Management system linked to moose density.

Research Project Techniques

Camera traps

Drones with thermal and red-green-blue sensors

PROJECT TIMELINE

	2022		2023			2024			2025	
	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer
Deploy cameras										
Camera checks										
Drone flights										
Final anlaysis and reporting										

CAMERA TRAPS

Camera Trap Locations

Moose Grant Furbearer Grant

~330 cameras

CAMERA PLACEMENT VARIED BY:

Slide from R. Moll

CAMERA DATA ANALYSIS

Two modeling techniques:

- 1. Time-to-event model
- 2. REST model

(Random encounter staying time)

Content from R. Moll

CAMERA TRAPS RESULTS

330 camera traps.

Two camera checks per year.

All 2022 images processed.

DRONE SURVEY DESIGN

Year 1: refine techniques and determine "sightability"

Year 2: use two UAS setups to survey 12 camera blocks in northern NH

Drone Survey Blocks

Slide from R. Moll

DRONE SURVEY DESIGN

RGB VS. THERMAL

Pictures from R. Moll

SIGHTABILITY

"Sightability"- How many moose are present but not detected?

Pictures from R. Moll

SIGHTABILITY

Number of moose detections across various conifer canopy cover estimated for a 7.5 m radius buffer around each moose. Data is binned in 10% increments.

DRONE SURVEYS WINTER 2024

Expected Outcomes and Products

- Final report- June-August 2025
- WMU-level moose density estimates/indices.
- Comparison between camera traps, UAS surveys, and hunter surveys
- Training of students at UNH

Example Heat Map

Predicted moose abundance

QUESTIONS?

Henry Jones NH Fish and Game Moose Project Leader <u>henry.f.jones@wildlife.nh.gov</u>

